Emergent Higgs

Ryuichiro Kitano (KEK, Sokendai)

collaboration with Yuichiro Nakai (Harvard)

126GeV

What is the microscopic physics behind the Higgs mechanism?

We know that

 EWSB happened twice: one by Higgs and another by QCD (chiral symmetry breaking).

There may be a unified framework to understand this. (Higgs as a part of QCD?)

What's Higgs?

It is pretty similar to superconductivity.

But the theory is just QED.

What's Higgs?

another example: chiral symmetry breaking

But the theory is just QCD.

hypothesis

Extra dimensional QCD

large extra dim.

small extra dim.

the theory is just QCD

Scenario

Standard Model in extra dim. (no Higgs)

```
compactification+ non-perturbative effectsof SM gauge interactions
```

Standard Model (with Higgs)

Extra dimensional gauge theory?

5-dimensional gauge theory:

two parameters: g_5 , R $dim(g_5)=-1/2$

$$\longrightarrow$$
 cut-off scale $\Lambda = \frac{8\pi^2}{g_5^2}$

large extra dim.

$$\frac{1}{R} \ll \Lambda$$

= weakly coupled

We get a weakly coupled4D effective theory

$$\frac{1}{g_4^2} = \frac{2\pi R}{g_5^2} = \frac{R\Lambda}{4\pi} \gg \frac{1}{4\pi}$$

small extra dim. or high energy

$$rac{1}{R}\gg \Lambda$$
 or $E\gg \Lambda$

= strongly coupled

→ "???" (non-perturbative)

We hope "???" is going to be our Higgs.

We need a definition of the theory to discuss this region. (results depend on how we cut off the theory..)

A (possible) definition of extra dim. theory

It has been proposed that

provides a UV completion.

[Arkani-Hamed, Cohen, Georgi '01] [Hill, Pokorski, Wang '01][Cheng, Hill, Pokorski, Wang '01]

Usual story: mimics extra-dimension only at low energy

$$rac{1}{R}=rac{4\pi gv}{N}, \quad \Lambda=rac{(4\pi)^2v}{g} \qquad \Lambda_{
m dec.}\equivrac{N}{R}=4\pi gv$$

g: gauge coupling at each site, v: vev of the link fields

The $N\rightarrow\infty$ limit while fixing R and Λ means

$$g o \infty$$
 , $v o \infty$

But, we cannot go beyond $g \gg 1$.

- --- One cannot take the continuum limit.
- Equivalent to say that we cannot discuss physics beyond the scale Λ since $\Lambda > \Lambda_{dec}$.

But with N=2 SUSY,

- (su(N_c)— each site is a finite theory. $(N_f=2N_c)$
 - → no problem with a large g.
 - \longrightarrow We can go beyond $\wedge!!$

6th dimension

appearance of 6th dimension

Interesting.

$1/R_5 \gg \Lambda$ means,

(small extra dim.)

```
KK modes
                           another KK tower
                                (magnetic)
   (electric)
2gv/N
      ----- = I/R_5
gv/N
                             --- v/g = I/R_6 = \Lambda
 0
```

magnetic picture gets better description.

Emergent Higgs

Higgs may be in the emergent degrees of freedom.

That would be an interesting unification.

a toy model: 2-site model

		$SU(3)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$	
	Q	3	3	1	10	
N=2	$ar{Q}$	$\overline{3}$	3	-1	1_0	([0 Ter
structure	Φ	1	1+8	0	10	ler
	q_1	3	1	1	$2_{1/6}$	
	t_1^c	$\overline{3}$	1	-1	$1_{-2/3}$	gaug
	b_1^c	$\overline{3}$	1	-1	$1_{1/3}$	gauge (Lagr (<o:< td=""></o:<>
	q_2	1	3	0	$2_{1/6}$	(10)
	t_2^c	1	3	0	$1_{-2/3}$	(<q)< td=""></q)<>
KK modes	b_2^c	1	3	0	$1_{1/3}$	•
	$ar{q}_2$	1	3	0	$\bar{2}_{-1/6}$	
	$ar{t}_2^c$	1	3	0	$1_{2/3}$	no
	\bar{b}_2^c	1	3	0	1_1/3	

Topcolor model [Hill '91]
[RK, Fukushima, Yamaguchi '10]
([Craig, Stolarski, Thaler '11][Csaki, Shirman,
Terning '11][Cohen, Hook, Torroba '12][Evans,
Ibe, Yanagida '12]...)

gauged (Lagrange multiplier) (<Q>=v is fixed)

no Higgs field

$$W = \sqrt{2}g \left(q_1 \bar{Q} \bar{q}_2 + t_1^c Q \bar{t}_2^c + b_1^c Q \bar{b}_2^c + \bar{Q} \Phi Q - v^2 \text{Tr} \Phi + v_q \bar{q}_2 q_2 + v_t \bar{t}_2^c t_2^c + v_b \bar{b}_2^c b_2^c \right).$$

For $\Lambda_1 \ll 4\pi v$ (weak coupling)

$$SU(3)_1 \times SU(3)_2 \longrightarrow SU(3)_{1+2}$$

We get MSSM without Higgs as low energy theory.

Below, we study the case with

 $\Lambda_1 \gg 4\pi v$ (strongly coupled region)

— we will see that magnetic degrees of freedom appear.

Seiberg duality [Seiberg '94]

SU(3)₁ factor gets strong

	$SU(3)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$
Q	3	3	1	10
$ar{Q}$	$\overline{3}$	3	-1	10
Φ	1	1+8	0	10
q_1	3	1	1	$2_{1/6}$
t_1^c	$\overline{3}$	1	-1	$1_{-2/3}$
b_1^c	$\overline{3}$	1	-1	1 _{1/3}
q_2	1	3	0	$2_{1/6}$
t_2^c	1	3	0	$1_{-2/3}$
b_2^c	1	$\overline{3}$	0	$1_{1/3}$
$ar{q}_2$	1	3	0	$\bar{2}_{-1/6}$
$ar{t}_2^c$	1	3	0	$ar{2}_{-1/6}$ $1_{2/3}$
$ar{b}_2^c$	1	3	0	$1_{-1/3}$

Higgs appeared.

	$SU(2)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$
f	2	1	3/2	2_0
$ar{f}_u$	$\overline{2}$	1	-3/2	$1_{1/2}$
$ar{f}_d$	$\overline{2}$	1	-3/2	$1_{-1/2}$
H_u	1	1	0	$2_{1/2}$
H_d	1	1	0	$2_{-1/2}$
f'	2	3	3/2	1 _{1/6}
$ar{f}'$	$\overline{2}$	$\overline{3}$	-3/2	$1_{-1/6}$
q	1	3	0	$2_{1/6}$
t^c	1	$\overline{3}$	0	$1_{-2/3}$
b^c	1	3	0	$1_{1/3}$

below the dynamical scale Λ_1 .

weakly coupled

a-maximization gives

[Intriligator, Wecht '03]

$$D(H_d) = 1.03$$
, $D(H_u) = 1.13$, $D(q) = 1.13$, $D(t^c) = 1.17$,

$$D(f) = 0.99$$
, $D(\bar{f}_u) = 0.99$, $D(\bar{f}_d) = 0.88$, $D(f') = 0.84$, $D(\bar{f}') = 0.88$.

$$\xrightarrow{\quad \frac{\tilde{g}}{4\pi}} \sim 0.41, \quad \frac{\lambda_d}{4\pi} \sim 0.11, \quad \frac{\lambda_u}{4\pi} \sim 0.26, \quad \frac{\lambda_t}{4\pi} \sim 0.29, \quad \frac{\lambda_q}{4\pi} \sim 0.26,$$

(we assumed $\lambda_b \ll 4\pi$ by taking small v_b)

$$W = \lambda_d \bar{f}_u H_d f + \lambda_u \bar{f}_d H_u f + \lambda_t \bar{f}_u t^c f' + \lambda_b \bar{f}_d b^c f' + \lambda_q \bar{f}' q f + \frac{(4\pi v)^2}{\Lambda_{\parallel}} \bar{f}' f',$$

$$= \Lambda'$$

$$\Lambda_1\gg 4\pi v \,\longrightarrow\, \Lambda' \,\ll\, 4\pi v$$
 (appearance of light degrees of freedom)

below \(\cent{\chi}\)

$$W = \lambda_d \bar{f}_u H_d f + \lambda_u \bar{f}_d H_u f - \frac{\lambda_q \lambda_t}{\Lambda'} f \bar{f}_u t^c q - \frac{\lambda_q \lambda_b}{\Lambda'} f \bar{f}_d b^c q.$$

SU(2)₁ factor confines

 $1_{-2/3}$

 $1_{1/3}$

(note: at this stage, λ 's get renormalized by O(1) factors.)

$$\longrightarrow W = \frac{\lambda_{u}\Lambda'}{4\pi} H_{u}H'_{d} + \frac{\lambda_{d}\Lambda'}{4\pi} H_{d}H'_{u} - \frac{\lambda_{q}\lambda_{t}}{4\pi} H'_{u}t^{c}q - \frac{\lambda_{q}\lambda_{b}}{4\pi} H'_{d}b^{c}q.$$

$$= \frac{|SU(3)_{2}|}{|SU(3)_{2}|} \frac{|U(1)_{B}|}{|SU(2)_{L} \times U(1)_{Y}|} \frac{|SU(2)_{L} \times U(1)_{Y}|}{|U(1)_{Q}|} \left(H'_{u}H'_{d} - S\bar{S} = \frac{\Lambda'^{2}}{(4\pi)^{2}}. \right)$$

$$= \frac{|SU(3)_{2}|}{|H_{u}|} \frac{|SU(2)_{L} \times U(1)_{Y}|}{|I_{u}|} \frac{|H_{u}|}{|I_{u}|} \frac{1}{|I_{u}|} \frac{0}{|I_{u}|} \frac{2_{1/2}}{|I_{u}|} \frac{|H_{u}|}{|I_{u}|} - S\bar{S} = \frac{\Lambda'^{2}}{(4\pi)^{2}}. \right)$$

$$< H'> = 0$$

$$< S > \neq 0$$

$$< S > \neq 0$$

$$= \frac{|SU(3)_{2}|}{|I_{u}|} \frac{|I_{u}|}{|I_{u}|} \frac{|I_{u}|}{|I_{$$

S is not dynamical one can integrate them out.

arriving at the MSSM-like model

$$W = \frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u - \frac{\lambda_q \lambda_t}{4\pi} H'_u t^c q - \frac{\lambda_q \lambda_b}{4\pi} H'_d b^c q.$$

$$K \ni \frac{\Lambda'^{\dagger}}{\Lambda'} H'_u H'_d + \text{h.c.}$$
 µ-like terms

obtained from kinetic terms for S and \overline{S} .

We consider SUSY breaking by turning on

$$\Lambda'(1 + m_{\rm SUSY}\theta^2)$$
 with $m_{\rm SUSY} \sim \Lambda' \sim 1 \text{ TeV}$

Higgs potential

$$V \ni \frac{m_{\text{SUSY}}^2}{(4\pi)^2} (|\lambda_u H_u|^2 + |\lambda_d H_d|^2) + \frac{1}{(4\pi)^2} (|\lambda_u H_u|^4 + |\lambda_d H_d|^4).$$

$$V \ni m_{\text{SUSY}}^2(|H'_u|^2 + |H'_d|^2) + \cdots$$

H_d is the main Higgs direction

$$V \ni m_{\text{SUSY}} \left(\frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u + \text{h.c.} \right),$$

$$W \ni \frac{\Lambda'}{4\pi} (\lambda_u H_u H_d' + \lambda_d H_d H_u') + m_{\text{SUSY}} H_u' H_d'.$$

H' are heavy

$$V \ni m_{\text{SUSY}}^2 H'_u H'_d + \text{h.c.}$$

Partially composite Higgs [RK, Luty, Nakai '12]

$m_h = 126 \text{ GeV}$

Higgs quartic term:

$$\frac{\lambda_d^4}{(4\pi)^2} + \frac{g_L^2 + g_Y^2}{2} \sim \frac{m_h^2}{\langle H \rangle^2} \sim 0.5,$$

$$\frac{\lambda_d}{4\pi} \sim 0.2.$$

not bad.

tuning: required size of the Higgs quadratic terms

$$\delta = \frac{m_h^2/2}{(\lambda_d m_{\rm SUSY}/4\pi)^2} = 20\% \cdot \left(\frac{m_{\rm SUSY}}{1 \text{ TeV}}\right)^{-2} \left(\frac{\lambda_d/4\pi}{0.2}\right)^{-2}.$$

1

typical size

not bad.

top mass

$$K \ni \frac{\lambda_q \lambda_t \lambda_d}{(4\pi)^2} \frac{1}{\Lambda'^{\dagger}} H_d^{\dagger} t^c q, \qquad W \ni -\frac{\lambda_q \lambda_t}{4\pi} H_u' t^c q$$

$$\longrightarrow m_t \sim \frac{\lambda_q \lambda_t \lambda_d}{(4\pi)^2} \langle H_d \rangle \sim 160 \text{ GeV} \cdot \left(\frac{\lambda_d/4\pi}{0.2}\right) \left(\frac{\lambda_q/4\pi}{0.6}\right) \left(\frac{\lambda_t/4\pi}{0.6}\right).$$

not bad.

note: top obtains a mass from H_d

stop/sbottom

$$m_{\tilde{t}} \sim m_{\tilde{b}} \sim \frac{\lambda_q}{4\pi} m_{\rm SUSY} \sim 600 \ {\rm GeV} \cdot \left(\frac{\lambda_q/4\pi}{0.6}\right) \left(\frac{m_{\rm SUSY}}{1 \ {\rm TeV}}\right).$$

should be observed soon! (should have been observed?)

Higgsino

$$m_{\tilde{h}} \sim \frac{\lambda_u \lambda_d}{(4\pi)^2} \frac{\Lambda'^2}{m_{\rm SUSY}} \sim 120 \text{ GeV} \cdot \left(\frac{\lambda_d/4\pi}{0.2}\right) \left(\frac{\lambda_u/4\pi}{0.6}\right) \left(\frac{\Lambda'}{1 \text{ TeV}}\right)^2 \left(\frac{m_{\rm SUSY}}{1 \text{ TeV}}\right)^{-1}.$$

pretty light.

dynamical sector

$$\Lambda' \sim 1 \text{ TeV}$$

We can access to UV dynamics of QCD. We expect ρ -like resonances (W', Z')

very interesting.

We saw that

EWSB may be a magnetic description of higher dim. QCD.

Can we also understand confinement/chiral symmetry breaking in QCD as the Higgs mechanism in the magnetic picture?

[Mandelstam '75, 't Hooft '75]

Maybe deconstruction and duality in SUSY theories can provides us with a new insight.

Regulating QCD to higher dimensional SQCD

This provides an interesting deformation of QCD. For $v \gg \Lambda_1, \Lambda_2$, this is just QCD.

Starting with N=2 SUSY and adding a small breaking of N=2 SUSY to N=1

 N_f dual quarks

magnetic picture

color-flavor locking

[See also Shifman and Yung '07, ...]

N_f dual quarks

turning on v

$$\langle q
angle = \left(egin{array}{ccc} v/\sqrt{N}_c & & & \\ & \ddots & & \\ & & v/\sqrt{N}_c \end{array}
ight)$$

magnetic gauge bosons of $U(N_f)$ behave as vector mesons ρ and ω .

string formation from U(I) breaking —> confinement [Mandelstam '75, 't Hooft '75]

low energy QCD as magnetic picture?

N=0?

Seiberg duality + soft SUSY breaking terms

electric

_		$SU(N_c)$	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$SU(N_c)_V$	$U(1)_{B'}$	$U(1)_R$
-	Q	N_c	N_f	1	1	1	0	$(N_f - N_c)/N_f$
	\overline{Q}	$\overline{N_c}$	1	$\overline{N_f}$	-1	1	0	$(N_f - N_c)/N_f$
	Q'	N_c	1	1	0	$\overline{N_c}$	1	1
	\overline{Q}'	$\overline{N_c}$	1	1	0	N_c	-1	1

magnetic

Table 1: Quantum numbers in the electric picture.

magneere		$SU(N_f)$	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_B$	$SU(N_c)_V$	$U(1)_{B'}$	$U(1)_R$
	\overline{q}	N_f	$\overline{N_f}$	1	0	1	N_c/N_f	N_c/N_f
j	\overline{q}	$\overline{N_f}$	1	N_f	0	1	$-N_c/N_f$	N_c/N_f
	Φ	1	N_f	$\overline{N_f}$	0	1	0	$2(N_f - N_c)/N_f$
Tallana	q'	N_f	1	1	1	N_c	$-1 + N_c/N_f$	0
Tachyonic	\overline{q}'	$\overline{N_f}$	1	1	-1	$\overline{N_c}$	$1 - N_c/N_f$	0
	Y	1	1	1	0	1 + Adj.	0	2
	Z	1	1	$\overline{N_f}$	-1	$\overline{N_c}$	1	$(2N_f - N_c)/N_f$
	\overline{Z}	1	N_f	1	1	N_c	-1	$(2N_f - N_c)/N_f$

One can also see the Color-Flavor Locking.

May not be totally crazy.

Hidden Local Symmetry

[Bando, Kugo, Uehara, Yamawaki, Yanagida '85]

We see such a picture in the real world.

Quiver deformation provides us with an understanding of HLS as the magnetic gauge theory.

weak coupling

strong coupling

QCD

HLS as magnetic theory

large extra dim. ← small extra dim.

See also

Moreover,

one can construct a string configuration made of ρ , ω , and f_0 and calculate an energy.

$$V(R) = -\frac{A}{R} + \sigma R$$
. $A = 0.25$. $\sqrt{\sigma} = 400 \text{ MeV}$

Comparing to lattice QCD

pretty consistent.

confining string = hadron vortex

Summary

- We studied a quiver model for EWSB. The Higgs fields emerge as magnetic degrees of freedom. By adding SUSY breaking terms, EWSB can occur while 126GeV Higgs boson is naturally explained.
- Confinement and Chiral Symmetry
 Breaking in QCD may also have a picture of the Higgs mechanism via duality.